Efficient Electromagnetic Material Characterization via 2-D Rectangular Waveguide Reduction, Derek R Dwyer (9781025114071) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

Efficient Electromagnetic Material Characterization via 2-D Rectangular Waveguide Reduction
Hardback

Efficient Electromagnetic Material Characterization via 2-D Rectangular Waveguide Reduction

$95.99
Sign in or become a Readings Member to add this title to your wishlist.

A new, low-frequency, rectangular waveguide-based electromagnetic material characterization technique is developed that will reduce the test sample size in two dimensions realizing up to 50 percent reduction in sample cross-sectional area. To achieve this, custom made, reduced aperture, sample holder flanges were used that reduce the waveguide's excessive cross-sectional dimensions, resulting in reduced sample fabrication costs. Additionally, MatLab code was developed to implement the rigorously derived modal-analysis solution that accommodates induced, higher-order transverse electric and transverse magnetic modes and accurately extract the reduced test sample's constitutive parameters. Experimental results using various test samples are compared to known, full-aperture measurements for both the reduced aperture waveguide configurations to verify the theoretical analysis. A differential error analysis is also performed for each configuration in an attempt to estimate the error associated with test sample thickness, aperture dimensions, and sample placement uncertainties.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
104
ISBN
9781025114071

A new, low-frequency, rectangular waveguide-based electromagnetic material characterization technique is developed that will reduce the test sample size in two dimensions realizing up to 50 percent reduction in sample cross-sectional area. To achieve this, custom made, reduced aperture, sample holder flanges were used that reduce the waveguide's excessive cross-sectional dimensions, resulting in reduced sample fabrication costs. Additionally, MatLab code was developed to implement the rigorously derived modal-analysis solution that accommodates induced, higher-order transverse electric and transverse magnetic modes and accurately extract the reduced test sample's constitutive parameters. Experimental results using various test samples are compared to known, full-aperture measurements for both the reduced aperture waveguide configurations to verify the theoretical analysis. A differential error analysis is also performed for each configuration in an attempt to estimate the error associated with test sample thickness, aperture dimensions, and sample placement uncertainties.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
104
ISBN
9781025114071