Comparison of Ray Tracing Through Ionospheric Models, Shayne C Aune (9781025111971) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

Comparison of Ray Tracing Through Ionospheric Models
Paperback

Comparison of Ray Tracing Through Ionospheric Models

$38.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

A comparison of ray tracing predictions for transionospheric electromagnetic wave refraction and group delays through ionospheric models is presented. Impacted applications include over-the-horizon RADAR, high frequency communications, direction finding, and satellite communications. The ionospheric models used are version 2.1 of Utah State University's Global Assimilation of Ionospheric Measurements (USU GAIM) model and the 2001 version of the International Reference Ionosphere (IRI) model. In order to provide ray tracing results applicable to satellite communications for satellites at geosynchronous orbit (GEO), a third ionospheric model is used to extend the sub-2000-km USU GAIM and IRI ionospheric specifications to 36540 km in altitude. The third model is based on an assumption of diffusive equilibrium for ion species above 2000 km. The ray-tracing code used is an updated implementation of the Jones-Stephenson ray-tracing algorithm provided by L. J. Nickisch and Mark A. Hausman. Ray-tracing predictions of signal refraction and group delay are given for paths between Goldstone Deep Space Observatory near Barstow, California, and the PanAmSat Galaxy 1R satellite. Results are given for varying frequency between 11MHz to 1GHz, varying time of day between 0600 and 1700 Pacific Standard Time on 1 November 2004, and varying signal transmission elevation angle.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
96
ISBN
9781025111971

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

A comparison of ray tracing predictions for transionospheric electromagnetic wave refraction and group delays through ionospheric models is presented. Impacted applications include over-the-horizon RADAR, high frequency communications, direction finding, and satellite communications. The ionospheric models used are version 2.1 of Utah State University's Global Assimilation of Ionospheric Measurements (USU GAIM) model and the 2001 version of the International Reference Ionosphere (IRI) model. In order to provide ray tracing results applicable to satellite communications for satellites at geosynchronous orbit (GEO), a third ionospheric model is used to extend the sub-2000-km USU GAIM and IRI ionospheric specifications to 36540 km in altitude. The third model is based on an assumption of diffusive equilibrium for ion species above 2000 km. The ray-tracing code used is an updated implementation of the Jones-Stephenson ray-tracing algorithm provided by L. J. Nickisch and Mark A. Hausman. Ray-tracing predictions of signal refraction and group delay are given for paths between Goldstone Deep Space Observatory near Barstow, California, and the PanAmSat Galaxy 1R satellite. Results are given for varying frequency between 11MHz to 1GHz, varying time of day between 0600 and 1700 Pacific Standard Time on 1 November 2004, and varying signal transmission elevation angle.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Paperback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
96
ISBN
9781025111971