Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Investigation of YAG
Hardback

Investigation of YAG

$98.99
Sign in or become a Readings Member to add this title to your wishlist.

The properties of thin, cerium activated, yttrium aluminum garnet (YAG: Ce), scintillating fiber-shaped crystals were investigated for particle tracking and calorimetric applications such as Compton imaging of Special Nuclear Material from remote platforms at standoff ranges. Silicon photomultipliers (SiPMs) are relatively new, efficient, single photon sensitive, solid-state photodiode arrays which are well suited for the readout of scintillating fibers. Using SiPMs, the scintillation decay time profiles of six 400 m YAG: Ce fiber crystals were measured under alpha and gamma irradiation. Interestingly, the observed decay times in the thin fibers were substantially slower than values for bulk single crystal YAG: Ce reported in open scientific literature; possible explanations are explored. Both laser induced photoluminescence and alpha scintillation measurements were conducted to estimate the effective attenuation length of the YAG: Ce fibers. Using the measured attenuation lengths, position-of-interaction measurements were conducted to determine the achievable position resolution in YAG: Ce fibers using dual fiber end SiPM readouts. The measured results are compared to theoretical calculations and Monte Carlo simulations. Finally, improvements to the detector concept, including a formula to determine the best SiPM model based on device parameters and the Birks' figure of merit of the scintillating material, are presented.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
200
ISBN
9781025103310

The properties of thin, cerium activated, yttrium aluminum garnet (YAG: Ce), scintillating fiber-shaped crystals were investigated for particle tracking and calorimetric applications such as Compton imaging of Special Nuclear Material from remote platforms at standoff ranges. Silicon photomultipliers (SiPMs) are relatively new, efficient, single photon sensitive, solid-state photodiode arrays which are well suited for the readout of scintillating fibers. Using SiPMs, the scintillation decay time profiles of six 400 m YAG: Ce fiber crystals were measured under alpha and gamma irradiation. Interestingly, the observed decay times in the thin fibers were substantially slower than values for bulk single crystal YAG: Ce reported in open scientific literature; possible explanations are explored. Both laser induced photoluminescence and alpha scintillation measurements were conducted to estimate the effective attenuation length of the YAG: Ce fibers. Using the measured attenuation lengths, position-of-interaction measurements were conducted to determine the achievable position resolution in YAG: Ce fibers using dual fiber end SiPM readouts. The measured results are compared to theoretical calculations and Monte Carlo simulations. Finally, improvements to the detector concept, including a formula to determine the best SiPM model based on device parameters and the Birks' figure of merit of the scintillating material, are presented.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
200
ISBN
9781025103310