Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Performance Capability of a Damaged Lighter-Than-Air Vehicle Operation in the Near Space Regime
Hardback

Performance Capability of a Damaged Lighter-Than-Air Vehicle Operation in the Near Space Regime

$93.99
Sign in or become a Readings Member to add this title to your wishlist.

This study investigates the ability of a high-altitude airship to maintain lift following the compromise of its lifting gas envelope. Accepted engineering principles are applied to develop a model that provides comparative analyses for airship depressurization alternatives following hull compromise. Specifically, maintaining lifting gas envelope overpressure to provide controllability in wind currents while sacrificing some buoyancy is compared with allowing envelope depressurization to occur with the goal of maintaining greater buoyancy as long as possible. The model provides insights to alternatives for recovering a damaged vehicle and its payload. In particular, the analysis demonstrates that maintaining the ability to navigate while forfeiting buoyancy can provide additional down-range maneuver capability. In some cases preserving the airship's hull overpressure for some period of time following compromise, vice allowing a slow depressurization to atmospheric equilibrium, extends the distance a damaged airship can sustain controlled navigation as much as eighty percent. However, the airship will forfeit nearly twenty percent of the altitude it would otherwise preserve by not forcing a constant hull overpressure.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
94
ISBN
9781025091204

This study investigates the ability of a high-altitude airship to maintain lift following the compromise of its lifting gas envelope. Accepted engineering principles are applied to develop a model that provides comparative analyses for airship depressurization alternatives following hull compromise. Specifically, maintaining lifting gas envelope overpressure to provide controllability in wind currents while sacrificing some buoyancy is compared with allowing envelope depressurization to occur with the goal of maintaining greater buoyancy as long as possible. The model provides insights to alternatives for recovering a damaged vehicle and its payload. In particular, the analysis demonstrates that maintaining the ability to navigate while forfeiting buoyancy can provide additional down-range maneuver capability. In some cases preserving the airship's hull overpressure for some period of time following compromise, vice allowing a slow depressurization to atmospheric equilibrium, extends the distance a damaged airship can sustain controlled navigation as much as eighty percent. However, the airship will forfeit nearly twenty percent of the altitude it would otherwise preserve by not forcing a constant hull overpressure.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
94
ISBN
9781025091204