Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The goal was to demonstrate that scaling the nonlinear response of a full-scale finite element model of a high-altitude long-endurance (HALE) aircraft was possible if the model was aeroelastically and "nonlinearly" scaled. A straight-forward method of scaling the first three natural vibration frequencies and mode shapes, and the first buckling eigenvalue was attempted. In addition to analytical scaling several experiments were accomplished to understand and overcome design challenges of HALE aircraft. One such challenge is combated by eliminating pitch control surfaces and replacing them with an aft-wing twist concept. This design was physically realized through wind tunnel measurement of forces, moments and pressures on a subscale experimental model proving that pitch control with aft-wing twist is feasible. Another challenge is predicting the nonlinear response of long-endurance aircraft. This was addressed by experimental validation of modeling nonlinear response on a subscale experimental model. The validation accomplished during this experiment on a subscale model will reduce technical risk for full-scale development of such pioneering craft. Nonlinearities can be attributed to follower forces, which were found to be a significant influence in HALE aircraft.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The goal was to demonstrate that scaling the nonlinear response of a full-scale finite element model of a high-altitude long-endurance (HALE) aircraft was possible if the model was aeroelastically and "nonlinearly" scaled. A straight-forward method of scaling the first three natural vibration frequencies and mode shapes, and the first buckling eigenvalue was attempted. In addition to analytical scaling several experiments were accomplished to understand and overcome design challenges of HALE aircraft. One such challenge is combated by eliminating pitch control surfaces and replacing them with an aft-wing twist concept. This design was physically realized through wind tunnel measurement of forces, moments and pressures on a subscale experimental model proving that pitch control with aft-wing twist is feasible. Another challenge is predicting the nonlinear response of long-endurance aircraft. This was addressed by experimental validation of modeling nonlinear response on a subscale experimental model. The validation accomplished during this experiment on a subscale model will reduce technical risk for full-scale development of such pioneering craft. Nonlinearities can be attributed to follower forces, which were found to be a significant influence in HALE aircraft.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.