Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Wind Tunnel Investigation of the Static Stability and Control Effectiveness of a Rotary Tail in a Portable UAV
Paperback

Wind Tunnel Investigation of the Static Stability and Control Effectiveness of a Rotary Tail in a Portable UAV

$45.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The Air Force Research Lab, Munitions Directorate, Flight Vehicles Integration Branch (AFRL/MNAV) developed a manportable, carbon-fiber matrix UAV with a flexible rectangular wing of 24 span and 6 chord, 18.2" length. There is a need for the development of smaller and lighter UAV's to perform certain missions. The objective of this experimental study was to determine the behavior and the aerodynamic characteristics of rotary tails. The bird-inspired rotary tail mechanism studied enabled control of two degrees of freedom and was configured to provide elevator deflection and rotation. Its effects on the static stability and control effectiveness were measured using the Air Force Institute of Technology (AFIT) low speed wind tunnel. The yaw moment provided by each rotary tail was found to be on the same order of magnitude as a typical rudder, and in that respect it offers promise as an effective flight control scheme. However, it was also found that the side force, and consequently the yaw moment, generated by the two tail controls (elevator deflection and rotation) were strongly coupled, which could lead to challenging aircraft control issues. A benefit is that the configurations used in this thesis would reduce the storage length by 48%.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
230
ISBN
9781025088389

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The Air Force Research Lab, Munitions Directorate, Flight Vehicles Integration Branch (AFRL/MNAV) developed a manportable, carbon-fiber matrix UAV with a flexible rectangular wing of 24 span and 6 chord, 18.2" length. There is a need for the development of smaller and lighter UAV's to perform certain missions. The objective of this experimental study was to determine the behavior and the aerodynamic characteristics of rotary tails. The bird-inspired rotary tail mechanism studied enabled control of two degrees of freedom and was configured to provide elevator deflection and rotation. Its effects on the static stability and control effectiveness were measured using the Air Force Institute of Technology (AFIT) low speed wind tunnel. The yaw moment provided by each rotary tail was found to be on the same order of magnitude as a typical rudder, and in that respect it offers promise as an effective flight control scheme. However, it was also found that the side force, and consequently the yaw moment, generated by the two tail controls (elevator deflection and rotation) were strongly coupled, which could lead to challenging aircraft control issues. A benefit is that the configurations used in this thesis would reduce the storage length by 48%.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Paperback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
230
ISBN
9781025088389