Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The purpose of this thesis was to investigate the performance of a twelve channel Standard Positioning Service (SPS) based Global Positioning System (GPS) receiver using an eight state Kalman filter in a hostile radio frequency (RF) environment and to develop instructional tools for teaching RF interference on GPS receivers. The two types of jamming signals generated included Continuous Wave (CW) and Swept CW. Actual GPS and jamming signals were used in the research. The signals received from GPS satellites exhibit a Doppler shift which vary between approximately six Kilohertz. The Doppler shift frequency can be reasonably predicted for a given time of day, for a given satellite, and for a known receiver location using GPS satellite almanac or ephemeris data. Additionally, the Pseudorandom Noise (PRN) Coarse Acquisition (C/A) code for each satellite exhibits specific maximum amplitude spectral lines. By tailoring the jamming signals to match with the Doppler shifted satellite frequencies and offsetting the jamming to a maximum spectral line, it was shown that individual Navstar XR5-M receiver channels for specific satellites could be selectively jammed/spoofed. Swept CW jamming resulted in pulling the XR5-M receiver tracking channels off frequency by up to 20 Kilohertz but resulted in a maximum position error of only 220 meters. The CW jamming of at least one of the XR5-M receiver channels resulted in position errors in the receiver in excess of 12 kilometers.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The purpose of this thesis was to investigate the performance of a twelve channel Standard Positioning Service (SPS) based Global Positioning System (GPS) receiver using an eight state Kalman filter in a hostile radio frequency (RF) environment and to develop instructional tools for teaching RF interference on GPS receivers. The two types of jamming signals generated included Continuous Wave (CW) and Swept CW. Actual GPS and jamming signals were used in the research. The signals received from GPS satellites exhibit a Doppler shift which vary between approximately six Kilohertz. The Doppler shift frequency can be reasonably predicted for a given time of day, for a given satellite, and for a known receiver location using GPS satellite almanac or ephemeris data. Additionally, the Pseudorandom Noise (PRN) Coarse Acquisition (C/A) code for each satellite exhibits specific maximum amplitude spectral lines. By tailoring the jamming signals to match with the Doppler shifted satellite frequencies and offsetting the jamming to a maximum spectral line, it was shown that individual Navstar XR5-M receiver channels for specific satellites could be selectively jammed/spoofed. Swept CW jamming resulted in pulling the XR5-M receiver tracking channels off frequency by up to 20 Kilohertz but resulted in a maximum position error of only 220 meters. The CW jamming of at least one of the XR5-M receiver channels resulted in position errors in the receiver in excess of 12 kilometers.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.