Using Relational Schemata in a Computer Immune System to Detect Multiple-Packet Network Intrusions, John L Bebo (9781025083506) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Using Relational Schemata in a Computer Immune System to Detect Multiple-Packet Network Intrusions
Hardback

Using Relational Schemata in a Computer Immune System to Detect Multiple-Packet Network Intrusions

$56.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Given the increasingly prominent cyber-based threat, there are substantial research and development efforts underway in network and host-based intrusion detection using single-packet traffic analysis. However, there is a noticeable lack of research and development in the intrusion detection realm with regard to attacks that span multiple packets. This leaves a conspicuous gap in intrusion detection capability because not all attacks can be found by examining single packets alone. Some attacks may only be detected by examining multiple network packets collectively, considering how they relate to the "big picture," not how they are represented as individual packets. This research demonstrates a multiple-packet relational sensor in the context of a Computer Immune System (CIS) model to search for attacks that might otherwise go unnoticed via single-packet detection methods. Using relational schemata, multiple-packet CIS sensors define "self" based on equal, less than, and greater than relationships between fields of routine network packet headers. Attacks are then detected by examining how the relationships among attack packets may lay outside of the previously defined "self." Furthermore, this research presents a graphical, user-interactive means of network packet inspection to assist in traffic analysis of suspected intrusions. The visualization techniques demonstrated here provide a valuable tool to assist the network analyst in discriminating between true network attacks and false positives, often a time-intensive, and laborious process.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
144
ISBN
9781025083506

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Given the increasingly prominent cyber-based threat, there are substantial research and development efforts underway in network and host-based intrusion detection using single-packet traffic analysis. However, there is a noticeable lack of research and development in the intrusion detection realm with regard to attacks that span multiple packets. This leaves a conspicuous gap in intrusion detection capability because not all attacks can be found by examining single packets alone. Some attacks may only be detected by examining multiple network packets collectively, considering how they relate to the "big picture," not how they are represented as individual packets. This research demonstrates a multiple-packet relational sensor in the context of a Computer Immune System (CIS) model to search for attacks that might otherwise go unnoticed via single-packet detection methods. Using relational schemata, multiple-packet CIS sensors define "self" based on equal, less than, and greater than relationships between fields of routine network packet headers. Attacks are then detected by examining how the relationships among attack packets may lay outside of the previously defined "self." Furthermore, this research presents a graphical, user-interactive means of network packet inspection to assist in traffic analysis of suspected intrusions. The visualization techniques demonstrated here provide a valuable tool to assist the network analyst in discriminating between true network attacks and false positives, often a time-intensive, and laborious process.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
144
ISBN
9781025083506