Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The United States is very dependant upon the use of space. Any threat to our ability to use it as desired deserves significant study. One such asymmetric threat is through the use of a microsatellite. The feasibility of using a microsatellite to accomplish an orbital rendezvous with a non-cooperative target is being evaluated. This study focused on identifying and further exploring the technical challenges involved in achieving a non-cooperative rendezvous. A systems engineering analysis and review of past research quickly led to a concentration on the guidance, navigation, and control (GNC) elements of the microsatellite operation. While both the control laws and orbit determination have been previously evaluated as feasible, the integration of the two remained in question. This research first validated past efforts prior to exploring the integration. Impulsive and continuous thrust control methods, and linear and nonlinear estimator filters were all candidate components to a potential system solution. A simple yet robust solution could not be found to meet reasonable rendezvous criteria, using essentially off-the-shelf technology and algorithms. Results reveal a simple linear filter is a misapplication and will not at all work. A nonlinear filter coupled with either a continuous or impulsive thrust controller was found to get somewhat close, but never close enough to attach to the target satellite. Successful GNC subsystem integration could only be achieved for a very simple case ignoring orbit perturbations such as the earth's oblateness. A top-level system architecture for a non-cooperative rendezvous microsatellite has been developed. The technical complexity, however, requires more complex algorithms to solve the rendezvous problem.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The United States is very dependant upon the use of space. Any threat to our ability to use it as desired deserves significant study. One such asymmetric threat is through the use of a microsatellite. The feasibility of using a microsatellite to accomplish an orbital rendezvous with a non-cooperative target is being evaluated. This study focused on identifying and further exploring the technical challenges involved in achieving a non-cooperative rendezvous. A systems engineering analysis and review of past research quickly led to a concentration on the guidance, navigation, and control (GNC) elements of the microsatellite operation. While both the control laws and orbit determination have been previously evaluated as feasible, the integration of the two remained in question. This research first validated past efforts prior to exploring the integration. Impulsive and continuous thrust control methods, and linear and nonlinear estimator filters were all candidate components to a potential system solution. A simple yet robust solution could not be found to meet reasonable rendezvous criteria, using essentially off-the-shelf technology and algorithms. Results reveal a simple linear filter is a misapplication and will not at all work. A nonlinear filter coupled with either a continuous or impulsive thrust controller was found to get somewhat close, but never close enough to attach to the target satellite. Successful GNC subsystem integration could only be achieved for a very simple case ignoring orbit perturbations such as the earth's oblateness. A top-level system architecture for a non-cooperative rendezvous microsatellite has been developed. The technical complexity, however, requires more complex algorithms to solve the rendezvous problem.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.