Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Probability Theory, An Analytic View
Paperback

Probability Theory, An Analytic View

$158.99
Sign in or become a Readings Member to add this title to your wishlist.

The third edition of this highly regarded text provides a rigorous, yet entertaining, introduction to probability theory and the analytic ideas and tools on which the modern theory relies. The main changes are the inclusion of the Gaussian isoperimetric inequality plus many improvements and clarifications throughout the text. With more than 750 exercises, it is ideal for first-year graduate students with a good grasp of undergraduate probability theory and analysis. Starting with results about independent random variables, the author introduces weak convergence of measures and its application to the central limit theorem, and infinitely divisible laws and their associated stochastic processes. Conditional expectation and martingales follow before the context shifts to infinite dimensions, where Gaussian measures and weak convergence of measures are studied. The remainder is devoted to the mutually beneficial connection between probability theory and partial differential equations, culminating in an explanation of the relationship of Brownian motion to classical potential theory.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Cambridge University Press
Country
United Kingdom
Date
21 November 2024
Pages
466
ISBN
9781009549004

The third edition of this highly regarded text provides a rigorous, yet entertaining, introduction to probability theory and the analytic ideas and tools on which the modern theory relies. The main changes are the inclusion of the Gaussian isoperimetric inequality plus many improvements and clarifications throughout the text. With more than 750 exercises, it is ideal for first-year graduate students with a good grasp of undergraduate probability theory and analysis. Starting with results about independent random variables, the author introduces weak convergence of measures and its application to the central limit theorem, and infinitely divisible laws and their associated stochastic processes. Conditional expectation and martingales follow before the context shifts to infinite dimensions, where Gaussian measures and weak convergence of measures are studied. The remainder is devoted to the mutually beneficial connection between probability theory and partial differential equations, culminating in an explanation of the relationship of Brownian motion to classical potential theory.

Read More
Format
Paperback
Publisher
Cambridge University Press
Country
United Kingdom
Date
21 November 2024
Pages
466
ISBN
9781009549004