Introduction to Online Control, Elad Hazan, Karan Singh (9781009499668) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Introduction to Online Control
Hardback

Introduction to Online Control

$95.95
Sign in or become a Readings Member to add this title to your wishlist.

This tutorial guide introduces online nonstochastic control, an emerging paradigm in control of dynamical systems and differentiable reinforcement learning that applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online control, both cost functions and perturbations from the assumed dynamical model are chosen by an adversary. Thus, the optimal policy is not defined a priori and the goal is to attain low regret against the best policy in hindsight from a benchmark class of policies. The resulting methods are based on iterative mathematical optimization algorithms and are accompanied by finite-time regret and computational complexity guarantees. This book is ideal for graduate students and researchers interested in bridging classical control theory and modern machine learning.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Date
31 December 2025
Pages
171
ISBN
9781009499668

This tutorial guide introduces online nonstochastic control, an emerging paradigm in control of dynamical systems and differentiable reinforcement learning that applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online control, both cost functions and perturbations from the assumed dynamical model are chosen by an adversary. Thus, the optimal policy is not defined a priori and the goal is to attain low regret against the best policy in hindsight from a benchmark class of policies. The resulting methods are based on iterative mathematical optimization algorithms and are accompanied by finite-time regret and computational complexity guarantees. This book is ideal for graduate students and researchers interested in bridging classical control theory and modern machine learning.

Read More
Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Date
31 December 2025
Pages
171
ISBN
9781009499668