Probabilistic Data-Driven Modeling, Tomaso Aste (9781009221856) — Readings Books
Probabilistic Data-Driven Modeling
Hardback

Probabilistic Data-Driven Modeling

$105.95
Sign in or become a Readings Member to add this title to your wishlist.

This book introduces relevant and established data-driven modeling tools currently in use or in development, which will help readers master the art and science of constructing models from data and dive into different application areas. It presents statistical tools useful to individuate regularities, discover patterns and laws in complex datasets, and demonstrates how to apply them to devise models that help to understand these systems and predict their behaviors. By focusing on the estimation of multivariate probabilities, the book shows that the entire domain, from linear regressions to deep learning neural networks, can be formulated in probabilistic terms. This book provides the right balance between accessibility and mathematical rigor for applied data science or operations research students, graduate students in CSE, and machine learning and uncertainty quantification researchers who use statistics in their field. Background in probability theory and undergraduate mathematics is assumed.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Date
1 May 2025
Pages
452
ISBN
9781009221856

This book introduces relevant and established data-driven modeling tools currently in use or in development, which will help readers master the art and science of constructing models from data and dive into different application areas. It presents statistical tools useful to individuate regularities, discover patterns and laws in complex datasets, and demonstrates how to apply them to devise models that help to understand these systems and predict their behaviors. By focusing on the estimation of multivariate probabilities, the book shows that the entire domain, from linear regressions to deep learning neural networks, can be formulated in probabilistic terms. This book provides the right balance between accessibility and mathematical rigor for applied data science or operations research students, graduate students in CSE, and machine learning and uncertainty quantification researchers who use statistics in their field. Background in probability theory and undergraduate mathematics is assumed.

Read More
Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Date
1 May 2025
Pages
452
ISBN
9781009221856