Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The brain has always had a fundamental advantage over conventional computers: it can learn. However, a new generation of artificial intelligence algorithms, in the form of deep neural networks, is rapidly eliminating that advantage. Deep neural networks rely on adaptive algorithms to master a wide variety of tasks, including cancer diagnosis, object recognition, speech recognition, robotic control, chess, poker, backgammon and Go, at super-human levels of performance.
In this richly illustrated book, key neural network learning algorithms are explained informally first, followed by detailed mathematical analyses. Topics include both historically important neural networks (e.g. perceptrons), and modern deep neural networks (e.g. generative adversarial networks). Online computer programs, collated from open source repositories, give hands-on experience of neural networks, and PowerPoint slides provide support for teaching. Written in an informal style, with a comprehensive glossary, tutorial appendices (e.g. Bayes’ theorem), and a list of further readings, this is an ideal introduction to the algorithmic engines of modern artificial intelligence.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The brain has always had a fundamental advantage over conventional computers: it can learn. However, a new generation of artificial intelligence algorithms, in the form of deep neural networks, is rapidly eliminating that advantage. Deep neural networks rely on adaptive algorithms to master a wide variety of tasks, including cancer diagnosis, object recognition, speech recognition, robotic control, chess, poker, backgammon and Go, at super-human levels of performance.
In this richly illustrated book, key neural network learning algorithms are explained informally first, followed by detailed mathematical analyses. Topics include both historically important neural networks (e.g. perceptrons), and modern deep neural networks (e.g. generative adversarial networks). Online computer programs, collated from open source repositories, give hands-on experience of neural networks, and PowerPoint slides provide support for teaching. Written in an informal style, with a comprehensive glossary, tutorial appendices (e.g. Bayes’ theorem), and a list of further readings, this is an ideal introduction to the algorithmic engines of modern artificial intelligence.