Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Developments in nonclassical crystallizationCrystallization via nonclassical pathways is important during the formation of minerals in nature and has become a popular method to synthesize advanced materials at both lab and industrial scales. Unlike classical crystal growth pathways via monomer-by-monomer addition, crystallization via nonclassical pathways, such as particle-by-particle attachment, can form bigger crystals, faster. Understanding nonclassical crystallization can aid the recognition of geochemical processes in nature and provide new insight into the design and synthesis of novel materials. This book examines topics such as nonclassical nucleation, cluster assembly, particle-based crystallization, crystal formation from amorphous intermedium phases, biomineralization via nonclassical pathways, theoretical developments to simulate nonclassical crystallization, and observation and application of nonclassical crystallization. Experienced researchers can learn more about the development of new techniques, and readers in fields such as energy, catalysis, biomedicine, optics, electrics, and magnetics will find this work useful.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Developments in nonclassical crystallizationCrystallization via nonclassical pathways is important during the formation of minerals in nature and has become a popular method to synthesize advanced materials at both lab and industrial scales. Unlike classical crystal growth pathways via monomer-by-monomer addition, crystallization via nonclassical pathways, such as particle-by-particle attachment, can form bigger crystals, faster. Understanding nonclassical crystallization can aid the recognition of geochemical processes in nature and provide new insight into the design and synthesis of novel materials. This book examines topics such as nonclassical nucleation, cluster assembly, particle-based crystallization, crystal formation from amorphous intermedium phases, biomineralization via nonclassical pathways, theoretical developments to simulate nonclassical crystallization, and observation and application of nonclassical crystallization. Experienced researchers can learn more about the development of new techniques, and readers in fields such as energy, catalysis, biomedicine, optics, electrics, and magnetics will find this work useful.