Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The action of a compact Lie group, G, on a compact symplectic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytope, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. For instance, the first chapter is largely devoted to the Delzant theorem, which says that there is a one-one correspondence between certain types of moment polytope and certain types of symplectic G-spaces. (One of the most challenging unsolved problems in symplectic geometry is to determine to what extent Delzant’s theorem is true of every compact symplectic G-space.) The moment polytope also encodes quantum information about the action of G. Using the methods of geometric quantization, one can frequently convert this action into a representation, p, of G on a Hilbert space, and in some sense the moment polytope is a diagramatic picture of the irreducible representations of G which occur as subrepresentations of p. Precise versions of this item of folklore are discussed in Chapters 3 and 4. Also, midway through Chapter 2 a more complicated object is discussed: the Duistermaat-Heckman measure, and the author explains in Chapter 4 how one can read off from this measure the approximate multiplicities with which the irreducible representations of G occur in p. This gives an excuse to touch on some results which are in themselves of great current interest: the Duistermaat-Heckman theorem, the localization theorems in equivariant cobomology of Atiyah-Bott and Berline-Vergne and the recent extremely exciting generalizations of these results by Witten, Jeffrey-Kirwan, Kalkman, and others. The last two chapters of this book are a self-contained treatment of the theory of toric varieties in which the usual hierarchal relation of complex to symplectic is reversed. This book is addressed to researchers and can be used as a semester text.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The action of a compact Lie group, G, on a compact symplectic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytope, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. For instance, the first chapter is largely devoted to the Delzant theorem, which says that there is a one-one correspondence between certain types of moment polytope and certain types of symplectic G-spaces. (One of the most challenging unsolved problems in symplectic geometry is to determine to what extent Delzant’s theorem is true of every compact symplectic G-space.) The moment polytope also encodes quantum information about the action of G. Using the methods of geometric quantization, one can frequently convert this action into a representation, p, of G on a Hilbert space, and in some sense the moment polytope is a diagramatic picture of the irreducible representations of G which occur as subrepresentations of p. Precise versions of this item of folklore are discussed in Chapters 3 and 4. Also, midway through Chapter 2 a more complicated object is discussed: the Duistermaat-Heckman measure, and the author explains in Chapter 4 how one can read off from this measure the approximate multiplicities with which the irreducible representations of G occur in p. This gives an excuse to touch on some results which are in themselves of great current interest: the Duistermaat-Heckman theorem, the localization theorems in equivariant cobomology of Atiyah-Bott and Berline-Vergne and the recent extremely exciting generalizations of these results by Witten, Jeffrey-Kirwan, Kalkman, and others. The last two chapters of this book are a self-contained treatment of the theory of toric varieties in which the usual hierarchal relation of complex to symplectic is reversed. This book is addressed to researchers and can be used as a semester text.