Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

As a survey of many technical results in probability theory and probability logic, this monograph by two widely respected scholars offers a valuable compendium of the principal aspects of the formal study of probability.
Hugues Leblanc and Peter Roeper explore probability functions appropriate for propositional, quantificational, intuitionistic, and infinitary logic and investigate the connections among probability functions, semantics, and logical consequence. They offer a systematic justification of constraints for various types of probability functions, in particular, an exhaustive account of probability functions adequate for first-order quantificational logic. The relationship between absolute and relative probability functions is fully explored and the book offers a complete account of the representation of relative functions by absolute ones.
The volume is designed to review familiar results, to place these results within a broad context, and to extend the discussions in new and interesting ways. Authoritative, articulate, and accessible, it will interest mathematicians and philosophers at both professional and post-graduate levels.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
As a survey of many technical results in probability theory and probability logic, this monograph by two widely respected scholars offers a valuable compendium of the principal aspects of the formal study of probability.
Hugues Leblanc and Peter Roeper explore probability functions appropriate for propositional, quantificational, intuitionistic, and infinitary logic and investigate the connections among probability functions, semantics, and logical consequence. They offer a systematic justification of constraints for various types of probability functions, in particular, an exhaustive account of probability functions adequate for first-order quantificational logic. The relationship between absolute and relative probability functions is fully explored and the book offers a complete account of the representation of relative functions by absolute ones.
The volume is designed to review familiar results, to place these results within a broad context, and to extend the discussions in new and interesting ways. Authoritative, articulate, and accessible, it will interest mathematicians and philosophers at both professional and post-graduate levels.