Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Bayesian Approach to Image Interpretation should interest anyone working in image interpretation. It is complete in itself and includes background material. This makes it useful for a novice as well as for an expert. It reviews some of the existing probabilistic methods for image interpretation and presents some new results. Additionally, there is extensive bibliography covering references in varied areas. For a researcher in this field, the material on synergistic integration of segmentation and interpretation modules and the Bayesian approach to image interpretation should be beneficial. For a practicing engineer, the procedure for generating knowledge base, selecting initial temperature for the simulated annealing algorithm, and some implementation issues should be valuable. Ideas introduced in the book include: an approach to image interpretation using synergism between the segmentation and the interpretation modules; a segmentation algorithm based on multiresolution analysis; novel use of the Bayesian networks (causal networks) for image interpretation; and emphasis on making the interpretation approach less dependent on the knowledge base and hence more reliable by modeling the knowledge base in a probabilistic framework. Useful in both the academic and industrial research worlds, Bayesian Approach to Image Interpretation may also be used as a textbook for a semester course in computer vision or pattern recognition.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Bayesian Approach to Image Interpretation should interest anyone working in image interpretation. It is complete in itself and includes background material. This makes it useful for a novice as well as for an expert. It reviews some of the existing probabilistic methods for image interpretation and presents some new results. Additionally, there is extensive bibliography covering references in varied areas. For a researcher in this field, the material on synergistic integration of segmentation and interpretation modules and the Bayesian approach to image interpretation should be beneficial. For a practicing engineer, the procedure for generating knowledge base, selecting initial temperature for the simulated annealing algorithm, and some implementation issues should be valuable. Ideas introduced in the book include: an approach to image interpretation using synergism between the segmentation and the interpretation modules; a segmentation algorithm based on multiresolution analysis; novel use of the Bayesian networks (causal networks) for image interpretation; and emphasis on making the interpretation approach less dependent on the knowledge base and hence more reliable by modeling the knowledge base in a probabilistic framework. Useful in both the academic and industrial research worlds, Bayesian Approach to Image Interpretation may also be used as a textbook for a semester course in computer vision or pattern recognition.