Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This textbook covers the advanced application and techniques of electrodynamics. The book begins with an introduction to the topic, with basic notations and equations presented, before moving on to examine various topics such as electromagnetic waves in a vacuum, the theory of relativity (including the Lorentz transformation) and electromagnetic fields in matter. Dispersion and transport are discussed, along with wave interactions in types of plasma and metamaterials, before the problems of electromagnetism in continuous matter are reviewed, and boundary interactions are studied.
The second half of the book looks at the more advanced topics, including dielectric guides techniques, further metamaterial and plasma interactions (such as helicoidal phenomena), interactions involving conductivity and X-ray, and magnetic field dynamics. Condensed matter equations are covered along with more general matter relations, and an advanced study of the direct and inverse problems of electrodynamics closes the topic. Finally, advanced exercises are available in the final chapter.
This is an excellent learning tool for students studying electrodynamics courses, and serves as a robust resource for anyone involved in the field.
Key Features
Provides discussions of fundamental principles Includes simplified exercises to assist the reader Simplified to bridge the gap between classical and applied mathematics
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This textbook covers the advanced application and techniques of electrodynamics. The book begins with an introduction to the topic, with basic notations and equations presented, before moving on to examine various topics such as electromagnetic waves in a vacuum, the theory of relativity (including the Lorentz transformation) and electromagnetic fields in matter. Dispersion and transport are discussed, along with wave interactions in types of plasma and metamaterials, before the problems of electromagnetism in continuous matter are reviewed, and boundary interactions are studied.
The second half of the book looks at the more advanced topics, including dielectric guides techniques, further metamaterial and plasma interactions (such as helicoidal phenomena), interactions involving conductivity and X-ray, and magnetic field dynamics. Condensed matter equations are covered along with more general matter relations, and an advanced study of the direct and inverse problems of electrodynamics closes the topic. Finally, advanced exercises are available in the final chapter.
This is an excellent learning tool for students studying electrodynamics courses, and serves as a robust resource for anyone involved in the field.
Key Features
Provides discussions of fundamental principles Includes simplified exercises to assist the reader Simplified to bridge the gap between classical and applied mathematics