Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Many areas of active research within the broad field of number theory relate to properties of polynomials, and this volume displays the most recent and most interesting work on this theme. The 2006 Number Theory and Polynomials workshop in Bristol drew together international researchers with a variety of number-theoretic interests, and the book’s contents reflect the quality of the meeting. Topics covered include recent work on the Schur-Siegel-Smyth trace problem, Mahler measure and its generalisations, the merit factor problem, Barker sequences, K3-surfaces, self-inversive polynomials, Newman’s inequality, algorithms for sparse polynomials, the integer transfinite diameter, divisors of polynomials, non-linear recurrence sequences, polynomial ergodic averages, and the Hansen-Mullen primitivity conjecture. With surveys and expository articles presenting the latest research, this volume is essential for graduates and researchers looking for a snapshot of current progress in polynomials and number theory.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Many areas of active research within the broad field of number theory relate to properties of polynomials, and this volume displays the most recent and most interesting work on this theme. The 2006 Number Theory and Polynomials workshop in Bristol drew together international researchers with a variety of number-theoretic interests, and the book’s contents reflect the quality of the meeting. Topics covered include recent work on the Schur-Siegel-Smyth trace problem, Mahler measure and its generalisations, the merit factor problem, Barker sequences, K3-surfaces, self-inversive polynomials, Newman’s inequality, algorithms for sparse polynomials, the integer transfinite diameter, divisors of polynomials, non-linear recurrence sequences, polynomial ergodic averages, and the Hansen-Mullen primitivity conjecture. With surveys and expository articles presenting the latest research, this volume is essential for graduates and researchers looking for a snapshot of current progress in polynomials and number theory.