Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

Ion scattering spectrometry, a powerful analytical tool used to determine the structure and composition of a substance, addresses critical problems in semiconductors, thin film growth, coatings, computer chips, magnetic storage devices, bioreactive surfaces, catalytic surfaces, and electrochemical surfaces (including the large battery industry). Principles and Applications of Ion Scattering Spectrometry: Surface Chemical and Structural Analysis represents the first and only book on this exciting field, seamlessly merging theoretical fundamentals with cutting-edge practical applications. Author J. Wayne Rabalais, the world’s leading expert in ion scattering spectrometry, recognizes both the pedagogic and research needs of such a text and divides his work accordingly. Chapters 1 through 5 address senior undergraduates and beginning graduate students in chemical physics and include figures and illustrative diagrams intended to exemplify the discussions. Chapters 6 through 9 comprise material on the brink of current research and contain specific references to other sources at the end of each; further, chapter 10 is a bibliography of ion scattering publications. Topics covered include: -Introductory, theoretical, and experimental aspects of ion scattering -General features and structural analysis -The recent technique of scattering and recoiling imaging spectrometry -Examples of structural analysis -Ion-surface charge exchange phenomena -Hyperthermal ion-surface interactions Engineers, researchers, professors, and postdoctoral associates involved in surface analysis, surface science, and studies of surfaces of materials will find Rabalais’ incomparable study a seminal moment in the advance of ion scattering spectrometry.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
Ion scattering spectrometry, a powerful analytical tool used to determine the structure and composition of a substance, addresses critical problems in semiconductors, thin film growth, coatings, computer chips, magnetic storage devices, bioreactive surfaces, catalytic surfaces, and electrochemical surfaces (including the large battery industry). Principles and Applications of Ion Scattering Spectrometry: Surface Chemical and Structural Analysis represents the first and only book on this exciting field, seamlessly merging theoretical fundamentals with cutting-edge practical applications. Author J. Wayne Rabalais, the world’s leading expert in ion scattering spectrometry, recognizes both the pedagogic and research needs of such a text and divides his work accordingly. Chapters 1 through 5 address senior undergraduates and beginning graduate students in chemical physics and include figures and illustrative diagrams intended to exemplify the discussions. Chapters 6 through 9 comprise material on the brink of current research and contain specific references to other sources at the end of each; further, chapter 10 is a bibliography of ion scattering publications. Topics covered include: -Introductory, theoretical, and experimental aspects of ion scattering -General features and structural analysis -The recent technique of scattering and recoiling imaging spectrometry -Examples of structural analysis -Ion-surface charge exchange phenomena -Hyperthermal ion-surface interactions Engineers, researchers, professors, and postdoctoral associates involved in surface analysis, surface science, and studies of surfaces of materials will find Rabalais’ incomparable study a seminal moment in the advance of ion scattering spectrometry.