Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Crystal engineers aim to control the way molecules aggregate in the crystalline phase and are therefore concerned with crystal structure prediction, polymorphism, and discovering the relative importance of different types of intermolecular forces and their influence on molecular structure. In order to design crystal structures, knowledge of the types, strengths, and nature of possible intermolecular interactions is essential. Non-covalent interactions involving p-systems is a theme that is under extensive investigation as these interactions can be inductors for the assembly of a vast array of supramolecular architectures. The Importance of Pi-Interactions in Crystal Engineering covers topics ranging from the identification of interactions involving p-systems, their impact on molecular and crystal structure in both organic and metallorganic systems, and how these interactions might be exploited in the design of new materials. Specialist reviews are written by internationally recognized researchers drawn from both academia and industry. The Importance of Pi-Interactions in Crystal Engineering provides an essential overview of this important aspect of crystal engineering for both entrants to the field as well as established practitioners, and for those working in crystallography, medicinal and pharmaceutical sciences, solid-state chemistry, physical chemistry, materials and nanotechnology.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Crystal engineers aim to control the way molecules aggregate in the crystalline phase and are therefore concerned with crystal structure prediction, polymorphism, and discovering the relative importance of different types of intermolecular forces and their influence on molecular structure. In order to design crystal structures, knowledge of the types, strengths, and nature of possible intermolecular interactions is essential. Non-covalent interactions involving p-systems is a theme that is under extensive investigation as these interactions can be inductors for the assembly of a vast array of supramolecular architectures. The Importance of Pi-Interactions in Crystal Engineering covers topics ranging from the identification of interactions involving p-systems, their impact on molecular and crystal structure in both organic and metallorganic systems, and how these interactions might be exploited in the design of new materials. Specialist reviews are written by internationally recognized researchers drawn from both academia and industry. The Importance of Pi-Interactions in Crystal Engineering provides an essential overview of this important aspect of crystal engineering for both entrants to the field as well as established practitioners, and for those working in crystallography, medicinal and pharmaceutical sciences, solid-state chemistry, physical chemistry, materials and nanotechnology.