Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

A Comprehensive Guide to R Programming for Data Analytics provides a comprehensive presentation of univariate and multivariate statistical models within the general linear model and generalized linear model framework to analyze simple and complex data using R software. This book presents popular R packages that are used in data mining (e.g., caret-classification and regression, lubridate-dates and times, string-R for string data) and visualization (e.g., ggplot, ggthemes, ggtext). The R packages used to analyze data using a particular statistical model are thoroughly explained through real-world and publicly available data sets. R codes are presented in a manner that helps readers understand the program code syntax. Examples of real-world data sets from a variety of academic disciplines are provided so that a wide audience can learn R programming to analyze data in their research. The book provides tips, recommendations, and strategies to troubleshoot common issues in R syntax, as well as definitions of key terms. Checkpoints are included to recap the concepts learned in each chapter. The book helps readers enhance their conceptual understanding and practical application of statistical models to real-world data sets, and enables readers to gain competency in R programming, which is an important skill in today's data-driven market.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
A Comprehensive Guide to R Programming for Data Analytics provides a comprehensive presentation of univariate and multivariate statistical models within the general linear model and generalized linear model framework to analyze simple and complex data using R software. This book presents popular R packages that are used in data mining (e.g., caret-classification and regression, lubridate-dates and times, string-R for string data) and visualization (e.g., ggplot, ggthemes, ggtext). The R packages used to analyze data using a particular statistical model are thoroughly explained through real-world and publicly available data sets. R codes are presented in a manner that helps readers understand the program code syntax. Examples of real-world data sets from a variety of academic disciplines are provided so that a wide audience can learn R programming to analyze data in their research. The book provides tips, recommendations, and strategies to troubleshoot common issues in R syntax, as well as definitions of key terms. Checkpoints are included to recap the concepts learned in each chapter. The book helps readers enhance their conceptual understanding and practical application of statistical models to real-world data sets, and enables readers to gain competency in R programming, which is an important skill in today's data-driven market.