Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Green Machine Learning and Big Data for Smart Grids
Paperback

Green Machine Learning and Big Data for Smart Grids

$363.95
Sign in or become a Readings Member to add this title to your wishlist.

Green Machine Learning and Big Data for Smart Grids: Practices and Applications is a guidebook to the best practices and potential for green data analytics when generating innovative solutions to renewable energy integration in the power grid. This book begins with a solid foundation in the concept of "green" machine learning and the essential technologies for utilizing data analytics in smart grids. A variety of scenarios are examined closely, demonstrating the opportunities for supporting renewable energy integration using machine learning, from forecasting and stability prediction to smart metering and disturbance tests.

Uses for control of physical components including inverters and converters are examined, along with policy implications. Importantly, real-world case studies and chapter objectives are combined to signpost essential information, and to support understanding and implementation.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Elsevier - Health Sciences Division
Country
United States
Date
13 November 2024
Pages
400
ISBN
9780443289514

Green Machine Learning and Big Data for Smart Grids: Practices and Applications is a guidebook to the best practices and potential for green data analytics when generating innovative solutions to renewable energy integration in the power grid. This book begins with a solid foundation in the concept of "green" machine learning and the essential technologies for utilizing data analytics in smart grids. A variety of scenarios are examined closely, demonstrating the opportunities for supporting renewable energy integration using machine learning, from forecasting and stability prediction to smart metering and disturbance tests.

Uses for control of physical components including inverters and converters are examined, along with policy implications. Importantly, real-world case studies and chapter objectives are combined to signpost essential information, and to support understanding and implementation.

Read More
Format
Paperback
Publisher
Elsevier - Health Sciences Division
Country
United States
Date
13 November 2024
Pages
400
ISBN
9780443289514