Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
In an era where Artificial Intelligence (AI) is revolutionizing healthcare, Explainable AI in Healthcare Imaging for Precision Medicine addresses the critical need for transparency, trust, and accountability in AI-driven medical technologies. As AI becomes an integral part of clinical decision-making, especially in imaging and precision medicine, the question of how AI reaches its conclusions grows increasingly significant. This book explores how Explainable AI (XAI) is transforming healthcare by making AI systems more interpretable, reliable, and transparent, empowering clinicians and enhancing patient outcomes.
Through a comprehensive examination of the latest research, real-world case studies, and expert insights, this book delves into the application of XAI in medical imaging, disease diagnosis, treatment planning, and personalized care. It discusses the technical methodologies behind XAI, the challenges and opportunities of its integration into healthcare, and the ethical and regulatory considerations that will shape the future of AI-assisted medical decisions.
Key areas of focus include the role of XAI in improving diagnostic accuracy in fields such as radiology, pathology, and genomics and its potential to enhance collaboration between AI systems, healthcare professionals, and patients. The book also highlights practical applications of XAI in personalized medicine, showing how explainable models help tailor treatments to individual patients, and discusses how XAI can contribute to reducing bias and improving fairness in medical decision-making.
Written by leading experts in AI, healthcare, and precision medicine, Explain[S3G1] able AI in Healthcare Imaging for Precision Medicine is an essential resource for researchers, clinicians, students, and policymakers. Whether you are looking to stay at the forefront of AI innovations in healthcare or seeking to understand how explainability can build trust in AI systems, this book provides the insights and knowledge needed to navigate the evolving landscape of AI in medicine. It invites readers to explore how XAI can revolutionize healthcare and precision medicine, shaping a future where AI is both powerful and trustworthy.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
In an era where Artificial Intelligence (AI) is revolutionizing healthcare, Explainable AI in Healthcare Imaging for Precision Medicine addresses the critical need for transparency, trust, and accountability in AI-driven medical technologies. As AI becomes an integral part of clinical decision-making, especially in imaging and precision medicine, the question of how AI reaches its conclusions grows increasingly significant. This book explores how Explainable AI (XAI) is transforming healthcare by making AI systems more interpretable, reliable, and transparent, empowering clinicians and enhancing patient outcomes.
Through a comprehensive examination of the latest research, real-world case studies, and expert insights, this book delves into the application of XAI in medical imaging, disease diagnosis, treatment planning, and personalized care. It discusses the technical methodologies behind XAI, the challenges and opportunities of its integration into healthcare, and the ethical and regulatory considerations that will shape the future of AI-assisted medical decisions.
Key areas of focus include the role of XAI in improving diagnostic accuracy in fields such as radiology, pathology, and genomics and its potential to enhance collaboration between AI systems, healthcare professionals, and patients. The book also highlights practical applications of XAI in personalized medicine, showing how explainable models help tailor treatments to individual patients, and discusses how XAI can contribute to reducing bias and improving fairness in medical decision-making.
Written by leading experts in AI, healthcare, and precision medicine, Explain[S3G1] able AI in Healthcare Imaging for Precision Medicine is an essential resource for researchers, clinicians, students, and policymakers. Whether you are looking to stay at the forefront of AI innovations in healthcare or seeking to understand how explainability can build trust in AI systems, this book provides the insights and knowledge needed to navigate the evolving landscape of AI in medicine. It invites readers to explore how XAI can revolutionize healthcare and precision medicine, shaping a future where AI is both powerful and trustworthy.