Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Human-Machine Interaction for Automated Vehicles: Driver Status Monitoring and the Takeover Process explains how to design an intelligent human-machine interface by characterizing driver behavior before and during the takeover process. Multiple solutions are presented to accommodate different sensing technologies, driving environments and driving styles. Depending on the availability and location of the camera, the recognition of driving and non-driving tasks can be based on eye gaze, head movement, hand gesture or a combination. Technical solutions to recognize drivers various behaviors in adaptive automated driving are described with associated implications to the driving quality.
Finally, cutting-edge insights to improve the human-machine-interface design for safety and driving efficiency are also provided, based on the use of this sensing capability to measure drivers' cognition capability.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Human-Machine Interaction for Automated Vehicles: Driver Status Monitoring and the Takeover Process explains how to design an intelligent human-machine interface by characterizing driver behavior before and during the takeover process. Multiple solutions are presented to accommodate different sensing technologies, driving environments and driving styles. Depending on the availability and location of the camera, the recognition of driving and non-driving tasks can be based on eye gaze, head movement, hand gesture or a combination. Technical solutions to recognize drivers various behaviors in adaptive automated driving are described with associated implications to the driving quality.
Finally, cutting-edge insights to improve the human-machine-interface design for safety and driving efficiency are also provided, based on the use of this sensing capability to measure drivers' cognition capability.