Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The subject of space-filling curves has generated a great deal of interest in the 100 years since the first such curve was discovered by Peano. Cantor, Hilbert, Moore, Knopp, Lebesgue, and Polya are among the prominent mathematicians who have contributed to the field. However, there have been no comprehensive treatments of the subject since Siepinsky’s in 1912. Cantor showed in 1878 that the number of points on an interval is the same as the number of points in a square (or cube, or whatever), and in 1890 Peano showed that there is indeed a continuous curve that continuously maps all points of a line onto all points of a square, though the curve exists only as a limit of very convoluted curves. This book discusses generalizations of Peano’s solution and the properties that such curves must possess and discusses fractals in this context. The only prerequisite is a knowledge of advanced calculus.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The subject of space-filling curves has generated a great deal of interest in the 100 years since the first such curve was discovered by Peano. Cantor, Hilbert, Moore, Knopp, Lebesgue, and Polya are among the prominent mathematicians who have contributed to the field. However, there have been no comprehensive treatments of the subject since Siepinsky’s in 1912. Cantor showed in 1878 that the number of points on an interval is the same as the number of points in a square (or cube, or whatever), and in 1890 Peano showed that there is indeed a continuous curve that continuously maps all points of a line onto all points of a square, though the curve exists only as a limit of very convoluted curves. This book discusses generalizations of Peano’s solution and the properties that such curves must possess and discusses fractals in this context. The only prerequisite is a knowledge of advanced calculus.