Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Local Density Approximations in Quantum Chemistry and Solid State Physics
Hardback

Local Density Approximations in Quantum Chemistry and Solid State Physics

$792.99
Sign in or become a Readings Member to add this title to your wishlist.

The* simplest picture of an atom, a molecule or a solid is the picture of its distribution of charge. It is obtained by specifying the positions of the atomic nuclei and by showing how the density, p(E), of the electronic charge-cloud varies from place to place. A much more detailed picture is provided by the many-electron wavefunction. This quantity shows not only the arrangement of the electrons with respect to the nuclei, but also the arrangement of the electrons with respect to each other, and it allows the evaluation of the total energy and other properties. The many-electron wavefunction is in principle obtained by solving the many-electron Schrodinger equation for the motion of the interacting electrons under the influ ence of the nuclei, but in practice the equation is unsolvable, and it is necessary to proceed by methods of approximation. Needless to say, .such methods will as a rule depend on the complexity of the system considered.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer Science+Business Media
Country
United States
Date
1 June 1984
Pages
851
ISBN
9780306416675

The* simplest picture of an atom, a molecule or a solid is the picture of its distribution of charge. It is obtained by specifying the positions of the atomic nuclei and by showing how the density, p(E), of the electronic charge-cloud varies from place to place. A much more detailed picture is provided by the many-electron wavefunction. This quantity shows not only the arrangement of the electrons with respect to the nuclei, but also the arrangement of the electrons with respect to each other, and it allows the evaluation of the total energy and other properties. The many-electron wavefunction is in principle obtained by solving the many-electron Schrodinger equation for the motion of the interacting electrons under the influ ence of the nuclei, but in practice the equation is unsolvable, and it is necessary to proceed by methods of approximation. Needless to say, .such methods will as a rule depend on the complexity of the system considered.

Read More
Format
Hardback
Publisher
Springer Science+Business Media
Country
United States
Date
1 June 1984
Pages
851
ISBN
9780306416675