Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Visual Cortex and Deep Networks: Learning Invariant Representations
Hardback

Visual Cortex and Deep Networks: Learning Invariant Representations

$139.99
Sign in or become a Readings Member to add this title to your wishlist.

A mathematical framework that describes learning of invariant representations in the ventral stream, offering both theoretical development and applications.The ventral visual stream is believed to underlie object recognition in primates. Over the past fifty years, researchers have developed a series of quantitative models that are increasingly faithful to the biological architecture. Recently, deep learning convolution networks-which do not reflect several important features of the ventral stream architecture and physiology-have been trained with extremely large datasets, resulting in model neurons that mimic object recognition but do not explain the nature of the computations carried out in the ventral stream. This book develops a mathematical framework that describes learning of invariant representations of the ventral stream and is particularly relevant to deep convolutional learning networks.
The authors propose a theory based on the hypothesis that the main computational goal of the ventral stream is to compute neural representations of images that are invariant to transformations commonly encountered in the visual environment and are learned from unsupervised experience. They describe a general theoretical framework of a computational theory of invariance (with details and proofs offered in appendixes) and then review the application of the theory to the feedforward path of the ventral stream in the primate visual cortex.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
MIT Press Ltd
Country
United States
Date
23 September 2016
Pages
136
ISBN
9780262034722

A mathematical framework that describes learning of invariant representations in the ventral stream, offering both theoretical development and applications.The ventral visual stream is believed to underlie object recognition in primates. Over the past fifty years, researchers have developed a series of quantitative models that are increasingly faithful to the biological architecture. Recently, deep learning convolution networks-which do not reflect several important features of the ventral stream architecture and physiology-have been trained with extremely large datasets, resulting in model neurons that mimic object recognition but do not explain the nature of the computations carried out in the ventral stream. This book develops a mathematical framework that describes learning of invariant representations of the ventral stream and is particularly relevant to deep convolutional learning networks.
The authors propose a theory based on the hypothesis that the main computational goal of the ventral stream is to compute neural representations of images that are invariant to transformations commonly encountered in the visual environment and are learned from unsupervised experience. They describe a general theoretical framework of a computational theory of invariance (with details and proofs offered in appendixes) and then review the application of the theory to the feedforward path of the ventral stream in the primate visual cortex.

Read More
Format
Hardback
Publisher
MIT Press Ltd
Country
United States
Date
23 September 2016
Pages
136
ISBN
9780262034722