Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Uranium Wars: The Scientific Rivalry That Created the Nuclear Age
Paperback

Uranium Wars: The Scientific Rivalry That Created the Nuclear Age

$47.99
Sign in or become a Readings Member to add this title to your wishlist.

Uranium, a nondescript element when found in nature, in the past century has become more sought after than gold. Its nucleus is so heavy that it is highly unstable and radioactive. If broken apart, it unleashes the tremendous power within the atom - the most controversial type of energy ever discovered. Set against the darkening shadow of World War II, Amir D. Aczel’s suspenseful account tells the story of the fierce competition among the day’s top scientists to harness nuclear power. The intensely driven Marie Curie identified radioactivity. The University of Berlin team of Otto Hahn and Lise Meitner - he an upright, politically conservative German chemist and she a soft-spoken Austrian Jewish theoretical physicist - achieved the most spectacular discoveries in fission. Curie’s daughter, Irene Joliot-Curie, raced against Meitner and Hahn to break the secret of the splitting of the atom. As the war raged, Niels Bohr, a founder of modern physics, had a dramatic meeting with Werner Heisenberg, the German physicist in charge of the Nazi project to beat the Allies to the bomb. And finally, in 1942, Enrico Fermi, a prodigy from Rome who had fled the war to the United States, unleashed the first nuclear chain reaction in a racquetball court at the University of Chicago. At a time when the world is again confronted with the perils of nuclear armament, Amir D. Aczel’s absorbing story of a rivalry that changed the course of history is as thrilling and suspenseful as it is scientifically revelatory and newsworthy.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Palgrave Macmillan
Country
United Kingdom
Date
29 October 2010
Pages
256
ISBN
9780230103351

Uranium, a nondescript element when found in nature, in the past century has become more sought after than gold. Its nucleus is so heavy that it is highly unstable and radioactive. If broken apart, it unleashes the tremendous power within the atom - the most controversial type of energy ever discovered. Set against the darkening shadow of World War II, Amir D. Aczel’s suspenseful account tells the story of the fierce competition among the day’s top scientists to harness nuclear power. The intensely driven Marie Curie identified radioactivity. The University of Berlin team of Otto Hahn and Lise Meitner - he an upright, politically conservative German chemist and she a soft-spoken Austrian Jewish theoretical physicist - achieved the most spectacular discoveries in fission. Curie’s daughter, Irene Joliot-Curie, raced against Meitner and Hahn to break the secret of the splitting of the atom. As the war raged, Niels Bohr, a founder of modern physics, had a dramatic meeting with Werner Heisenberg, the German physicist in charge of the Nazi project to beat the Allies to the bomb. And finally, in 1942, Enrico Fermi, a prodigy from Rome who had fled the war to the United States, unleashed the first nuclear chain reaction in a racquetball court at the University of Chicago. At a time when the world is again confronted with the perils of nuclear armament, Amir D. Aczel’s absorbing story of a rivalry that changed the course of history is as thrilling and suspenseful as it is scientifically revelatory and newsworthy.

Read More
Format
Paperback
Publisher
Palgrave Macmillan
Country
United Kingdom
Date
29 October 2010
Pages
256
ISBN
9780230103351