Data-Driven Modeling & Scientific Computation, J. Nathan Kutz (9780198929086) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

 
Paperback

Data-Driven Modeling & Scientific Computation

$134.99
Sign in or become a Readings Member to add this title to your wishlist.

Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data is an accessible introductory-to-advanced textbook focusing on integrating scientific computing methods and algorithms with modern data analysis techniques, including basic applications of machine learning in the sciences and engineering. Its overarching goal is to develop techniques that allow for the integration of the dynamics of complex systems and big data.

This comprehensive textbook provides a survey of practical numerical solution techniques for ordinary and partial differential equations as well as algorithms for data manipulation, data-driven modelling, and machine learning. Emphasis is on the implementation of numerical schemes to practical problems in the engineering, biological, and physical sciences.

The high-level programming language python is used throughout the book to implement and develop mathematical solution strategies. One specific aim of the book is to integrate standard scientific computing methods with the burgeoning field of data analysis, machine learning and Artificial Intelligence (AI). This area of research is expanding at an incredible pace in the sciences due to the proliferation of data collection in almost every field of science.

The enormous data sets routinely encountered in the sciences now certainly give a big incentive to develop mathematical techniques and computational algorithms that help synthesize, interpret, and give meaning to the data in the context of its scientific setting. This brings together, in a self-consistent fashion, the key ideas from (i) statistics, (ii) time-frequency analysis and (iii) low-dimensional reductions in order to provide meaningful insight into the data sets one is faced with in any scientific field today, including those generated from complex dynamic systems. This is a tremendously exciting area and much of this part of the book is driven by intuitive examples of how the three areas (i)-(iii) can be used in combination to give critical insight into the fundamental workings of various problems.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Oxford University Press
Country
United Kingdom
Date
21 August 2026
Pages
576
ISBN
9780198929086

Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data is an accessible introductory-to-advanced textbook focusing on integrating scientific computing methods and algorithms with modern data analysis techniques, including basic applications of machine learning in the sciences and engineering. Its overarching goal is to develop techniques that allow for the integration of the dynamics of complex systems and big data.

This comprehensive textbook provides a survey of practical numerical solution techniques for ordinary and partial differential equations as well as algorithms for data manipulation, data-driven modelling, and machine learning. Emphasis is on the implementation of numerical schemes to practical problems in the engineering, biological, and physical sciences.

The high-level programming language python is used throughout the book to implement and develop mathematical solution strategies. One specific aim of the book is to integrate standard scientific computing methods with the burgeoning field of data analysis, machine learning and Artificial Intelligence (AI). This area of research is expanding at an incredible pace in the sciences due to the proliferation of data collection in almost every field of science.

The enormous data sets routinely encountered in the sciences now certainly give a big incentive to develop mathematical techniques and computational algorithms that help synthesize, interpret, and give meaning to the data in the context of its scientific setting. This brings together, in a self-consistent fashion, the key ideas from (i) statistics, (ii) time-frequency analysis and (iii) low-dimensional reductions in order to provide meaningful insight into the data sets one is faced with in any scientific field today, including those generated from complex dynamic systems. This is a tremendously exciting area and much of this part of the book is driven by intuitive examples of how the three areas (i)-(iii) can be used in combination to give critical insight into the fundamental workings of various problems.

Read More
Format
Paperback
Publisher
Oxford University Press
Country
United Kingdom
Date
21 August 2026
Pages
576
ISBN
9780198929086