Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Time Series
Hardback

Time Series

$476.99
Sign in or become a Readings Member to add this title to your wishlist.

Time series analysis is one of several branches of statistics whose practical importance has increased with the availability of powerful computational tools. Methodology that was originally developed for specialized applications, for example in finance or geophysics, is now widely available within general statistical packages.

The second edition of Time Series: A Biostatistical Introduction is an introductory account of time series analysis, written from the perspective of applied statisticians whose interests lie primarily in the biomedical and health sciences. This edition has a stronger focus on substantive applications, in which each statistical analysis is directed at a specific research question. Separate chapters cover simple descriptive methods of analysis, including time-plots, smoothing, the correlogram and the periodogram; theory of stationary random processes; discrete-time models for single series; continuous-time models for single series; generalized linear models for time series of counts; models for replicated series; spectral analysis, and bivariate time series.

The book is unique in its focus on biomedical and health science applications, which has been strengthened in this second edition. Nevertheless, the methods described are more widely applicable. It should be useful to teachers and students on masters-level degree courses in statistics, biostatistics and epidemiology, and to biomedical and health scientists with a knowledge of statistical methods at undergraduate level. Throughout, examples based on real datasets show a close interplay between statistical method and substantive science. This book will also describe the implementation of the methods in the R computing environment and provide access to R code and datasets.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Oxford University Press
Country
United Kingdom
Date
28 April 2025
Pages
288
ISBN
9780198714835

Time series analysis is one of several branches of statistics whose practical importance has increased with the availability of powerful computational tools. Methodology that was originally developed for specialized applications, for example in finance or geophysics, is now widely available within general statistical packages.

The second edition of Time Series: A Biostatistical Introduction is an introductory account of time series analysis, written from the perspective of applied statisticians whose interests lie primarily in the biomedical and health sciences. This edition has a stronger focus on substantive applications, in which each statistical analysis is directed at a specific research question. Separate chapters cover simple descriptive methods of analysis, including time-plots, smoothing, the correlogram and the periodogram; theory of stationary random processes; discrete-time models for single series; continuous-time models for single series; generalized linear models for time series of counts; models for replicated series; spectral analysis, and bivariate time series.

The book is unique in its focus on biomedical and health science applications, which has been strengthened in this second edition. Nevertheless, the methods described are more widely applicable. It should be useful to teachers and students on masters-level degree courses in statistics, biostatistics and epidemiology, and to biomedical and health scientists with a knowledge of statistical methods at undergraduate level. Throughout, examples based on real datasets show a close interplay between statistical method and substantive science. This book will also describe the implementation of the methods in the R computing environment and provide access to R code and datasets.

Read More
Format
Hardback
Publisher
Oxford University Press
Country
United Kingdom
Date
28 April 2025
Pages
288
ISBN
9780198714835