Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Vision is our primary sensory modality, and we are naturally curious as to how the visual system assembles. The visual system is in many ways remarkably simple, a repeating assemblage of neurons and support cells that parse the visual field through precision and redundancy. Through this simplicity the eye has often led the way in our exploration of how an organ is assembled. Eye development has therefore long been a favorite for exploring mechanisms of cell fate choice, patterning and cell signaling.
This volume, which is part of the Current Topics in Developmental Biology series, highlights the exceptional advances over the past 20 years. Chapters emphasize our knowledge of transcription factors and how these generate networks to direct the eye field and associated structures. Topics such as cell fate specification are also explored, along with the potential of Drosophila as a model for lens formation and the progress made in using the Drosophila eye to examine planar cell polarity.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Vision is our primary sensory modality, and we are naturally curious as to how the visual system assembles. The visual system is in many ways remarkably simple, a repeating assemblage of neurons and support cells that parse the visual field through precision and redundancy. Through this simplicity the eye has often led the way in our exploration of how an organ is assembled. Eye development has therefore long been a favorite for exploring mechanisms of cell fate choice, patterning and cell signaling.
This volume, which is part of the Current Topics in Developmental Biology series, highlights the exceptional advances over the past 20 years. Chapters emphasize our knowledge of transcription factors and how these generate networks to direct the eye field and associated structures. Topics such as cell fate specification are also explored, along with the potential of Drosophila as a model for lens formation and the progress made in using the Drosophila eye to examine planar cell polarity.