Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The Multifunctional Gut of Fish provides a comprehensive synthesis and an integrative overview of the range of gut functions and their implications for organismal physiology. The highly diversified anatomy and functions of the gut, including nutrient uptake, immune barrier function, salt and water homeostasis and respiration, as well as neuroendocrine actions and control are covered in detail by leading authors. In addition, this volume explores the pronounced implications of gut function for whole animal integrative physiology and compensatory demands for non-gastrointestinal organs. As the first comprehensive reference to discuss the diverse morphological and functional adaptations of the gut, this volume provides an excellent resource for comparative physiologists, aquaculturists and biomedical researchers employing fish as model organisms for mammalian physiology.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The Multifunctional Gut of Fish provides a comprehensive synthesis and an integrative overview of the range of gut functions and their implications for organismal physiology. The highly diversified anatomy and functions of the gut, including nutrient uptake, immune barrier function, salt and water homeostasis and respiration, as well as neuroendocrine actions and control are covered in detail by leading authors. In addition, this volume explores the pronounced implications of gut function for whole animal integrative physiology and compensatory demands for non-gastrointestinal organs. As the first comprehensive reference to discuss the diverse morphological and functional adaptations of the gut, this volume provides an excellent resource for comparative physiologists, aquaculturists and biomedical researchers employing fish as model organisms for mammalian physiology.