Primes in the Form $x^2 + ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Third Edition with Solutions
David A. Cox
Primes in the Form $x^2 + ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Third Edition with Solutions
David A. Cox
This book studies when a prime $p$ can be written in the form $x^{2} + ny^{2}$. It begins at an elementary level with results of Fermat and Euler and then discusses the work of Lagrange, Legendre and Gauss on quadratic reciprocity and the genus theory of quadratic forms. After exploring cubic and biquadratic reciprocity, the pace quickens with the introduction of algebraic number fields and class field theory. This leads to the concept of ring class field and a complete but abstract solution of $p = x^{2} + ny^{2}$. To make things more concrete, the book introduces complex multiplication and modular functions to give a constructive solution. The book ends with a discussion of elliptic curves and Shimura reciprocity. Along the way the reader will encounter some compelling history and marvelous formulas, together with a complete solution of the class number one problem for imaginary quadratic fields.
The book is accessible to readers with modest backgrounds in number theory. In the third edition, the numerous exercises have been thoroughly checked and revised, and as a special feature, complete solutions are included. This makes the book especially attractive to readers who want to get an active knowledge of this wonderful part of mathematics.
This item is not currently in-stock. It can be ordered online and is expected to ship in approx 4 weeks
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.