Characterization of Uav Performance and Development of a Formation Flight Controller for Multiple Small Uavs

Patrick A McCarthy

Characterization of Uav Performance and Development of a Formation Flight Controller for Multiple Small Uavs
Format
Paperback
Publisher
Biblioscholar
Country
Published
20 September 2012
Pages
168
ISBN
9781249450085

Characterization of Uav Performance and Development of a Formation Flight Controller for Multiple Small Uavs

Patrick A McCarthy

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The Air Force Institute of Technology’s (AFIT) Advanced Navigation Technology (ANT) Center has recently delved into the research topic of small Unmanned Aerial Vehicles (UAV). One area of particular interest is using multiple small UAVs cooperatively to improve mission efficiency, as well as perform missions that couldn’t be performed using vehicles independently. However, many of these missions require that the UAVs operate in close proximity with each other. This research lays the foundation required to use the ANT Center’s UAVs for multi-vehicle missions (e.g. cooperatively) by accomplishing two major goals. First, it develops test procedures that can be used to characterize the tracking performance of a small UAV being controlled by a waypoint guided autopilot. This defines the size of the safety zones that must be maintained around each vehicle to ensure no collisions, assuming no, as yet unspecified, collision avoidance algorithm is being implemented. Secondly, a formation flight algorithm is developed that can be used to guide UAVs relative to each other using a waypoint guided autopilot. This is done by dynamically changing the waypoints. Such an approach gives a wrap-around method of cooperatively controlling UAVs that can only be guided waypoint-to-waypoint. For both components of this research, tests were conducted using a hardware-in-the-loop (HITL) simulation before validating through flight testing. This report, along with legacy documentation and procedures, furthers the UAV test bed at AFIT and establishes methods for simulating, visualizing, and flight testing multiple UAVs during formation/cooperative flight.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.