Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

Trend growth in total factor productivity (TFP) is unobserved; it is frequently assumed to evolve continuously over time. That assumption is inherent in the use of the Hodrick-Prescott or Bandpass filter to extract trend. Similarly, the Kalman filter/ unobserved-components approach assumes that changes in the trend growth rate are normally distributed. In fact, however, innovations to the trend growth rate of total factor productivity are far from normal. The distribution is fat-tailed, with large outliers in 1973. Allowing for these outliers, the estimated trend growth rate changes only infrequently. A nonlinear filtering approach is probably better suited to capturing the infrequent past and possible current shifts in trend growth of TFP. One such approach is the Markov-switching model, which is estimated and tested in this paper. The Markov- switching approach appears to have several advantages over repeated Andrews tests.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
Trend growth in total factor productivity (TFP) is unobserved; it is frequently assumed to evolve continuously over time. That assumption is inherent in the use of the Hodrick-Prescott or Bandpass filter to extract trend. Similarly, the Kalman filter/ unobserved-components approach assumes that changes in the trend growth rate are normally distributed. In fact, however, innovations to the trend growth rate of total factor productivity are far from normal. The distribution is fat-tailed, with large outliers in 1973. Allowing for these outliers, the estimated trend growth rate changes only infrequently. A nonlinear filtering approach is probably better suited to capturing the infrequent past and possible current shifts in trend growth of TFP. One such approach is the Markov-switching model, which is estimated and tested in this paper. The Markov- switching approach appears to have several advantages over repeated Andrews tests.